Clusters data using dbscan method and saves cluster assignments for each cell barcode to colData.
Generally used to assign clusters to UMAP projection after PCA and UMAP dimensional reduction.
Usage
runClustering(
TapestriExperiment,
alt.exp = "alleleFrequency",
dim.reduction = "UMAP",
eps = 0.8,
dim.1 = 1,
dim.2 = 2,
...
)Arguments
- TapestriExperiment
TapestriExperimentobject- alt.exp
Character,
altExpslot to use.NULLuses top-level/main experiment. Default "alleleFrequency".- dim.reduction
Character, reduced dimension data to use. Default "UMAP".
- eps
Numeric,
dbscanepsparameter. Lower to increase cluster granularity. Seedbscan::dbscan(). Default 0.8.- dim.1
Numeric, index of data dimension to use. Default 1.
- dim.2
Numeric, index of data dimension to use. Default 2.
- ...
Additional parameters to pass to
dbscan::dbscan().
Examples
tap.object <- newTapestriExperimentExample() # example TapestriExperiment object
#> ℹ Moving gRNA probe to `altExp` slot "grnaCounts".
#> ℹ Moving barcode probe to `altExp` slot "barcodeCounts".
#> ℹ Moving chrY probe(s) probe_231, probe_232, probe_233, probe_234, probe_235, probe_236, probe_237, probe_238, probe_239, and probe_240 to `altExp` slot "chrYCounts".
tap.object <- runPCA(tap.object, alt.exp = "alleleFrequency")
tap.object <- runUMAP(tap.object, pca.dims = 1:3)
#> ℹ Running UMAP on: alleleFrequency.
tap.object <- runClustering(tap.object, dim.reduction = "UMAP", eps = 0.8)
#> ℹ Finding clusters in: alleleFrequency UMAP
